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Light Transport and Image Formation

A light-in-flight image is a three-dimensional data cube with two spatial and one temporal dimension. It can be
understood as an image where each spatial pixel consists not of a single value like in a conventional intensity image,
but of a temporal histogram which contains information about how much light the pixel receives at a given time t
after the emission from a light source. Following the notation of O’Toole et al. [1], the flux of photons Φ for each
pixel at time t is then

Φ(t) = (s ∗ l) (t) + a(t) (1)

where s is the scene response defined by the geometry and reflectance of the scene, l is the temporal distribution
of the illumination pulse, and a is the ambient light present in the scene. This distribution is sampled using the
SPAD sensor which produces a signal for each detected photon that is then time-stamped by the respective timing
electronics. All detected photon events are then sorted into a temporal histogram. For each SPAD pixel, a histogram
is measured:

n(t) = ηSPAD (Φ ∗ j) (t) + γSPAD (2)

where ηSPAD is the photon detection probability of the SPAD, j is the jitter accounting for uncertainties in the
time-stamping, and γSPAD denotes dark counts of the sensor. Temporal discretisation is determined by the width of
each histogram bin. The whole light-in-flight image is a spatial grid of these temporal histograms and therefore has
the form of a three-dimensional data cube i(x, y, t) = nx,y(t).

In addition to the SPAD sensor, we utilize a CCD sensor that sees the same image as the SPAD sensor, but naturally
has no time resolution. It can thus only measure the integrated signal

p = ηCCD

∫
∆T

Φ(t) dt+ γCCD (3)

that sums up all light intensity measured during an exposure time ∆T by the sensor with quantum efficiency ηCCD,
including dark counts γCCD. The whole two-dimensional CCD image is a grid of pixel values c(x, y) = px,y.

In the following mathematical considerations, all images are vectorized, e.g. the vector c contains all pixels of a
CCD image in a linear sequence, a vector d analogously contains all entries of the light-in-flight data cube.

In our set-up, both sensors share the same objective lens via a beam splitter. Due to this fixed imaging system,
only one single initial alignment calibration is necessary to ensure that the time-integrated SPAD-image matches
the CCD-image. It can easily be performed using a calibration target like a printed pattern and then choosing the
appropriate crop of the CCD sensor that matches the integrated SPAD image.

Forward Model and Reconstruction of High-Resolution Light-in-Flight Images

Our goal is to fuse a low spatial resolution SPAD image of size m × n × τ (a data cube with m × n spatial pixels
and τ time bins) with an intensity image of dimension M ×N in order to recover a high resolution data cube of the
size M ×N × τ . To achieve this, the light transport from the scene to the SPAD sensor is described by a matrix A of
size m · n×M ·N , which models all effects that the signal undergoes in the spatial domain on its way from the high



2

resolution state as it is measured by the CCD camera, to the low resolution state as measured by the SPAD array.
In principle, this transport matrix could be gauged experimentally by illuminating the scene with suitable patterns
and probing the mapping from CCD pixels to SPAD pixels. This process is difficult to conduct in practice, as the
illumination would have to be modified in such a way that it is capable of illuminating only certain exact pixels in
the CCD image. To circumvent this tedious calibration step, we instead develop the matrix as a forward model based
on the known (linear) effects on the signal, which can then also be used to produce simulated SPAD measurements
from a high-resolution ground truth. The matrix A in our model is given as the product of three matrices:

A = P · S ·B (4)

each representing a distinct step in the transport.
As described in the main paper, the SPAD sensor is moved slightly out of focus in order to acquire information

from all scene points despite the low fill factor of the sensor. Instead of calibrating for the point spread function
of the system, the blur that is accounted for in the matrix B is approximated as a 2D Gaussian. In synthetic
experiments with different blur kernels, a Gaussian kernel yielded the best reconstruction results, even when the
simulated measurements had been produced using other possible shapes like a disk kernel (which would correspond to
the isolated defocus blur as it constitutes a convolution with the aperture shape) instead. B is thus the convolution
matrix that, when multiplied with a vectorized image, yields the convolution of said image with a Gaussian kernel.

The matrix S acts as a mask, corresponding to the distribution of the active pixel area on the sensor, selecting the
part of the incident light that is actually measured by the SPAD pixels. In practice, S is a diagonal matrix containing
only zeros and ones - depending on whether a high resolution image pixel falls onto passive or active SPAD sensor
area.

The matrix P performs the downsizing of the resulting image from M × N to m × n pixels by summing up
corresponding patches of pixels (for k × k downscaling, P would add up patches of size k × k to obtain a SPAD pixel
value).

The matrix A acts only on the spatial dimensions of the light-in-flight image and is thus applied on each temporal
bin of the light-in-flight data cube:

r = Aτ · iHR, (5)

where r is the vectorized raw SPAD measurement, iHR is the vectorized high-resolution transient image and Aτ ∈
R
mnτ×MNτ applies A to all time bins of iHR. It is obtained as the Kronecker product of an identity matrix of size
τ × τ and the matrix A:

Aτ = 1τ ⊗A (6)

More details on the matrices used in the model can be found in the section below.
In the case of noisy SPAD data (real measurement or simulations including noise), the data cube is first denoised

using total variation in all three dimensions. The contrast of the CCD image is adjusted such that a potential offset
of the pixel values is removed in order to eliminate sensor specific noise. Its intensity is furthermore scaled to match
the integrated intensity of the SPAD measurement, so that the total intensity integrated over all pixels and time bins
is the same for the CCD and the SPAD measurement. This is necessary due to different quantum efficiencies and
exposure times, as well as different measurement units of the sensors and corresponds to a scaling of factor

f =
ηSPAD ·∆T eff

SPAD

e · ηCCD ·∆TCCD
(7)

under the assumption of temporally constant ambient light, with an effective exposure time ∆T eff
SPAD of the SPAD

sensor and a conversion factor e between photoelectrons and digital pixel intensity values. These individual quantities
constituting f need not be known; instead we use

f =

∑m,n,τ
x,y,t d(x, y, t)∑M,N
x,y c(x, y)

, (8)

treating intensity values in the SPAD and CCD images as effectively dimensionless quantities and units as implicit.



3

Forward Model Details

In order to fuse a low spatial resolution SPAD measurement of size m×n×τ (a data cube with m×n spatial pixels
and τ time bins) with an intensity image of dimension M ×N , we first model the light transport from the scene to
the SPAD sensor. It is described by a matrix A of size m · n×M ·N that is the product of three matrices, as given
in Eq.4, where P , S and B each represent a distinct step in the transport and are described in more detail in the
following. All matrices are given for a toy example of a 4 × 4 SPAD array with τ = 16 time bins and a CCD image
of resolution 16× 16.

Since our SPAD sensor is moved out of focus, we model the resulting blur by a 2D Gaussian distribution. The
matrix B then looks as shown in Fig. 1. When multiplied with a vectorized image of resolution M ×N (represented
as a column vector of length M ·N), it yields a blurred image of the same resolution (plus additional padding due to
the blur).

FIG. 1: Matrix B.

The SPAD sensor has a low fill factor. We therefore include in our model the fact that only 2% of the light actually
reaches the active pixel area and neglect the rest of the light. A mask as shown on the left side of Fig. 2 is used to
model the distribution of active area on the sensor area. It is reshaped into a matrix that can be multiplied with the
blurred vectorized image, as can be seen on the right side of Fig. 2.

FIG. 2: Left: Mask of the active pixel areas on the whole sensor area. Right: Matrix S - due to the dimensions of S, the active
areas are only barely visible as black dots on the diagonal.

Lastly, the matrix P performs the downscaling of the vectorized M ×N image (plus padding from the blur) to the
resolution m× n by summing up respective image areas (in this case patches of 4× 4 pixels - see Fig. 3).
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FIG. 3: Matrix P .

The matrix A which is the product of the matrices P , S, and B, then looks as shown in Fig. 4.

FIG. 4: Matrix A.

Since this matrix acts only on a single image and not on a full SPAD data cube, we construct a matrix Aτ as the
Kronecker product of an identity matrix of size τ × τ and the matrix A:

Aτ = 1τ ⊗A

When multiplied with a vectorized high resolution data cube xHR (size M ·N · τ × 1), it yields a low resolution SPAD
measurement r (size m · n · τ × 1), including blur and mask, by applying A to each time frame of the data cube:

d = Aτ · iHR.

Aτ is of dimension m · n · τ ×M ·N · τ as depcited in Fig. 5.
Using this forward model, a high resolution data cube can be reconstructed from a low resolution SPAD measurement

and a high resolution CCD image as described in the paper.

Numerical Simulations

In order to simulate the fusion of a CCD sensor image and a corresponding SPAD measurement, we created artificial
light-in-flight images of three-dimensional scenes by using a time-of-flight renderer1 that raytraces the scene, stores the
time each ray has travelled from the light source to the camera and sorts them into a histogram for each camera pixel.
The result is a three-dimensional data cube of the light-in-flight image. An integration over the temporal dimension
of the high-resolution ground-truth rendering serves as the simulated CCD image (see e.g. Fig. 7). Simulated SPAD

1 Further information on the used renderer can be found in [2].
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FIG. 5: Matrix Aτ .

FIG. 6: (a) High resolution ground truth simulated light-in-flight image. (b) The same scene in simulated SPAD sensor view
when the image is in focus. (c) Simulated SPAD view when the image is out of focus. (d) Reconstruction from the out-of-focus
measurements and a high-resolution time-integrated image of the scene. Columns 1-3 show a volume rendering of the scene
from different perspectives, column 4 shows a depth image of the scene obtained by using the time bin with the highest photon
count as the depth information per pixel.

measurements are created from this high-resolution data cube using the forward model described earlier. Figure 6
shows the light-in-flight data cube as volume renderings seen from different angles and, for additional visualisation,
as depth maps. These depth maps are created in a naive way, using the time bin with the highest photon count as
depth information, and are meant to provide additional visualisation for scenes with negligible amounts of multiply
scattered light. They should not be considered comprehensive visualisations of the reconstruction results as they are
not created using state-of-the-art methods and always constitute a reduction of the data to two dimensions. This
holds for all depth maps depicted in this paper. In Fig. 6, the ground truth data cube is shown in row (a) and the
corresponding simulated SPAD measurements created using the forward model in row (c). The scene is visibly blurred
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FIG. 7: Simulated CCD image of the artificial three-dimensional scene.

in the spatial dimension – a standard variation of 6 high-resolution pixel widths was used for the Gaussian kernel.
Row (b) shows what the SPAD measurement would look like without any blur: due to the low fill factor of the SPAD
sensor, information is lost and holes appear in the image in the temporal dimension due to spatially sparse sampling.

Using only the simulated measurement from (c) and the simulated high-resolution CCD image, the scene can be
reconstructed as seen in row (d) according to Eq. 3 of the main text. Suitable regularization parameters α, β and
γ were found experimentally by performing a parameter sweep over several orders of magnitude for each parameter.
The total variation prior was found to be unnecessary for this scene, as it contains mostly direct reflections, thus δ
was set to zero. α = 1, β = 10−7 and γ = 10−4 were found to yield the best and most stable reconstruction results
and were used for all reconstructions of this simulated scene throughout this paper.

Figure 8 shows reconstructions of the same scene in different spatial resolutions with and without noise. The width
of the Gaussian blur used in the simulation was adjusted for each resolution, from σ = 1.5 CCD pixel widths in the
96 × 96 case to σ = 6 CCD pixel widths in the 384 × 384 reconstruction. The noise is modeled as a combination of
Poissonian and Gaussian noise in order to account for shot noise as well as other effects such as thermal or readout
noise. In order to model the simulated measurements as closely to the real measurements as possible, the pixel count
range of the artificial data was adjusted to typical values measured with the set-up described in the main paper before
applying the Poisson noise (roughly 5 · 106 total photon counts, which corresponds to ∼100 photon counts per pixel
and time bin - meaning per ’voxel’ in the data cube - on average). Additionally, areas in the measured data cube
(after background subtraction) that do not contain any signal (only noise) were analysed and the pixel values were
found to follow a Gaussian distribution (due to background subtraction having already been applied here, noise that
is actually of Poissonian nature with high mean values is treated as a Gaussian distribution with lower mean). The
parameters of this distribution were fitted to the data and used for the artificial Gaussian noise that was added to the
simulated data. As a result, signal-independent Gaussian noise with µ = 5.6 and σ = 6.1 was added to the simulated
data, in addition to the Poisson noise.

As measures of the reconstruction performance, the peak signal-to-noise ratio (PSNR) as well as the relative
error δrel = ||ireco−itruth||2/||itruth||2 are stated for each resolution. While in the noise-free case the quality of the
reconstruction is approximately constant, the addition of noise decreases the reconstruction performance both
numerically and perceptually. The degradation also increases with higher spatial upsampling factors. However, even
for a spatial resolution of M × N = 384 × 384, which corresponds to a factor of 12 in both spatial dimensions of
the SPAD measurement, a meaningful reconstruction could be achieved even in the presence of noise. In principle,
there is no fundamental limit to the resolution that could be gained in this way. The reconstructions would, however,
degrade as the upsampling ratio is increased. This could be alleviated with a more precise knowledge of the optical
system to ensure the forward model matches well the experimental conditions. One must also consider computational
time for larger dataset – one route to reducing the processing time is to sub-divide the scene into smaller spatial
“patches” in which case the computational time would scale linearly with pixel count.

An additional simulated scene featuring a diffuse table, three diffuse walls forming a corner, and a specular mirror
located behind the table, is shown on the left side of Fig. 9. Due to inter-reflections between the objects, a light-
in-flight image of this scene has a complex temporal distribution that can not be reduced to single light bounces on
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FIG. 8: Reconstructed simulated scene in different spatial resolutions (96×96 to 384×384) with 95 time bins without (left
column) and with (right column) added noise. For each reconstruction, the deviation from the ground truth is given as the
peak signal-to-noise ratio (PSNR) and the relative error δrel = ||ireco−itruth||2/||itruth||2. Both refer to the whole three-dimensional
light-in-flight image, not the depth image.

each surface. On the right side of Fig. 9, the temporal intensity profile of a spatial pixel of the light-in-flight image
(marked by a red square in the left image) is shown: After an initial peak of light that undergoes a single reflection
on its path from the light source to the camera, additional, less intense light is detected by the same pixel, due to
interreflections of the surrounding walls.
Figure 10 shows five frames from the simulated light-in-flight image at different points in time, the first row depicting
the ground truth, the second the 32× 32 pixels measurement that has been created from it. The third row shows the
reconstruction of a 256×256 light in flight image from the 32×32 SPAD measurement and the simulated CCD image
(as shown in Fig. 9, left). It uses the same parameters as above, except δ = 10−7, therefore employing a total variation
prior. The last row shows how the reconstruction quality degrades when Gaussian and Poisson noise is added (using
the same scaling and parameters as above). This and Fig. 9 (right) show that the reconstruction matches the ground
truth well, with some artefacts in the late time-frames that contain only multiply reflected light, especially with added
noise. The time frame at t = 1.430 ns (column four) shows how spatial detail is resolved in the reconstruction that is
not visible in the simulated measurement due to the low resolution.
Since the intensity level of the multiply reflected light is very low (only about 5% of the intensity of the direct
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FIG. 9: Simulated scene featuring a diffuse table and walls, as well as a specular mirror behind the table. The red square marks
the spatial pixel whose temporal light intensity profile is plotted on the right. After a primary (direct) reflection, additional
light that has scattered off the surrounding walls is reflected towards the camera from this same scene point.

reflections, as can be seen from the color legends in Fig. 10), its reconstruction is affected strongly by additional noise.
If necessary, lower noise levels can be achieved in experiment by averaging multiple measurements of the same scene,
which would extend the acquisition time accordingly.

The supplemental material of the paper contains video renderings of the light-in-flight image and its reconstructions.
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FIG. 10: Five frames from the light-in-flight image of the scene shown on the left side of Fig. 9 at different points in time (see
column headings) illustrating multiple light bounces in the scene. Due to severe differences in brightness between direct and
higher order reflections, each frame’s brightness has been adjusted to the respective depicted intensity range (see color legends).
(a) Ground truth simulation. (b) Simulated SPAD measurement of size 32 × 32 (without added noise). (c) Reconstruction to
256 × 256 without added noise. (d) Reconstruction to 256 × 256 with added noise.
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(a) (b) (c) (d) (e)

FIG. 11: (a) CCD image and (b) SPAD image from [3] [4]. (c) Reconstruction using our method in full temporal resolution.
(d) Reconstruction using our method after temporally rebinning the SPAD data sixfold. (e) Simple depth images created from
the rebinned reconstruction.

Image Retrieval Runtimes

Data set Time bins τ Run time / mins

Golfball 25 11.6
Waterglass 44 78.3
Basketball 34 37.8
Letters 51 126.7
Steps 32 31.3
Simulation 38 19.0

TABLE I: Reconstruction runtimes for data sets depicted in Fig. 2 of the main paper, as well as the simulated data. All
reconstructions have a spatial resolution of 96 × 96 pixels.

Upsampling Results on Other Data Sets

In order to evaluate and compare our method further, we used it to reconstruct high resolution light-in-flight
images from measured and simulated data provided by Lindell et al. [3, 4]. Each real mesurement data set consists
of a SPAD measurement in 256× 256 pixels spatial resolution and a time bin width of 26 ps, as well as a 1024× 1024
pixel CCD image of the same scene. The data was captured with the SPAD sensor in focus, so in order to simulate
experimental conditions as in our set-up and thus make the data compatible to our reconstruction, we blurred the
SPAD measurements spatially with a two-dimensional Gaussian and then downscaled it to a spatial resolution of
64 × 64 pixels. We then used our method to upsample this ’simulated out-of-focus measurement’ data to 512 × 512
and 1024 × 1024 for the full time resolution and a temporally rebinned version of the data cube 2, respectively.

2 According to [3] the FWHM of their acquisition system is ∼440 ps, which corresponds to approximately 17 time bins. We therefore
perform a temporal rebinning of factor 6 for faster reconstrucion times and smoother results.
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FIG. 12: Detail of the first scene shown in Fig. 11 from a slightly different angle. It shows how high resolution detail from
the CCD camera has been fused into the reconstructed data-cube, including fine intensity details like letters and symbols on
objects in the scene.

Figure 11 shows these results for three different datasets. Especially the results depicted in the first row demonstrate
how high resolution detail, including intensity information, from the CCD image has been transferred into the
reconstructed light-in-flight image (see detail in Fig. 12). For additional illustration and to provide a certain degree
of comparability to the upsampling results in [3], (naive) depth images are shown in the last column.

Figure 13 shows details of reconstructions, depicted as (naive) depth maps, from a simulated dataset [4] with
very low signal-to-noise ratio (on average 2 signal photons and 50 background photons per pixel). As with the
real measurements, to make the data compatible to our method, we first blurred the (now synthetic) SPAD image
spatially and downsampled it by a factor of 3. We then upsampled it back to original size using our reconstruction
method. For comparison, results from Lindell et al. for the same details can be found in [3] in Figure 4. Despite
being noisier than theirs, our depth maps demonstrate that our model is capable of dealing with very low signal
levels and produce meaningful depth maps even though no sophisticated method to extract the depth map from the
reconstructed light-in-flight image is used.

Reconstructions of both captured and simulated data from [4] show a certain level of ”patchiness” in the depth
maps, which can also be observed in a video view of the reconstructed data cubes (see supplemental material). Since
this behaviour is also visible in reconstructions on simulations with high signal-to-noise ratio, and not present in our
own captured data, we suspect that it is caused by the artificial blur being applied to the SPAD measurement in a
resolution of only 256×256 pixels (as this is the maximum resolution available). The original scene signal at this point
has already undergone sampling by a SPAD device, including all uncertainties and losses that come with it (low fill
factor, spatial quantization). Using this data to create the 64× 64 measurement that serves as input for our method,
and then upsampling it to 1024 × 1024, is basically an attempt to reconstruct more details than the undefocused
SPAD data contains, justifying a lack in quality (i.e. in the form of ’patchiness’) in the results. With the optical blur
during the acquisition, before the sampling step, we specifically address this problem by spreading scene information
into multiple pixels. Better results would therefore be expected from data that had been acquired with a set-up like
ours, as it would include more scene information in the SPAD measurement than we can account for with the given
measurement data sets.

In comparison to the work by Lindell et al. [3], our method is capable of upsampling whole light-in-flight images
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FIG. 13: Depth maps of details from a scene simulated with low signal-to-noise ratio of only 2 signal photons and 50 background
photons per pixel. Top: ground truth. Bottom: Results using our reconstruction.

including mutliply reflected light. Instead of a neural network, it employs convex optimization and an appropriate
image formation model. It is still possible to reconstruct depth maps from the reconstructed scenes in cases where this
mapping makes sense (mostly direct reflections). Our method is not limited to, but allows usage of a low resolution
two-dimensional SPAD array that does not require scanning of the scene, like the set-up used by [3]. As we downsample
their 256 × 256 SPAD data by a factor of 4 × 4 after blurring it, we demonstrate upsampling by a factor of up to
16× 16 on these external data sets (from 64 to 1024 pixels edge length).
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