
SUPPLEMENTARY MATERIALS: Neural network identification of people

hidden from view with a single-pixel, single-photon detector

Piergiorgio Caramazza1,2, Alessandro Boccolini1, Daniel Buschek3, Matthias Hullin4,

Catherine F. Higham5, Robert Henderson6, Roderick Murray-Smith5 and Daniele Faccio2,∗∗

1Institute of Photonics and Quantum Sciences,

Heriot-Watt University, Edinburgh EH14 4AS, UK

2School of Physics and Astronomy, Kelvin Building,

University of Glasgow, Glasgow G12 8QQ, UK

3Media Informatics Group, University of Munich (LMU), Munich, Germany

4Institute for Computer Science II, University of Bonn,

Friedrich-Ebert-Allee 144 53113 Bonn, Germany

5School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK and

6School of Engineering, Institute for Integrated Micro and Nano Systems,

University of Edinburgh, Edinburgh EH9 3JL, UK

∗ ∗Daniele.Faccio@glasgow.ac.uk

2

I. NEURAL NETWORK CLASSIFIER.

We build a nonlinear classifier with the aim of correctly identifying the label of histograms

resulting from the acquisition of pulsed laser light backscattered from three different people in seven

different positions. We use a supervised approach where the input vector (a temporal histogram)

is paired to an output vector encoding the class of the person and the target location. Both class

of person and location are treated as categorical classification tasks, and encoded using a ‘one-

hot’ encoding with Nc binary outputs for the person classes and Nl binary outputs for location

positions. In this work Nc = 3, Nl = 7. The cost function, minimised during learning, is the

categorical cross-entropy loss [1]. For the i-th observation, the cross-entropy loss of the person

class is

CCEc,i =

Nc∑
j=1

(yc,i,j ln oc,i,j + (1 − yc,i,j) ln(1 − oc,i,j)) ,

where oc,i,j and yc,i,j denote the predicted class and the true class for the j-th person respectively.

Similarly for location, the cross-entropy loss for location is

CCEl,i =

Nl∑
k=1

(yl,i,k ln ol,i,k + (1 − yl,i,k) ln(1 − ol,i,k)) ,

where ol,i,k and yl,i,k denote the predicted location and the true class for the k-th location respec-

tively. As we are classifying simultaneously both person and position, the resulting cost function

is the joint effect of the two cost functions on the person and location output vectors. The cost,

L, minimised over the whole training set of N examples is

L = − 1

N

N∑
i=1

(CCEc,i + CCEl,i) .

The ANN architecture processes input data in parallel through: a fully-connected layer in order

to retrieve more information about the distance; and convolutional block layers which, due to their

translation invariant nature, focus more on the temporal histogram shape and features. After a

number of layers, the output layer comprises two groups of softmax sublayers, associated with

person class and location respectively. The largest architecture tested is shown in Figure 1. We

used the flexible, open-source Keras library to implement our ANN in Python [1], for an example

of how the code looks see Section II. The network weights were regularised using l2 weight decay

with a constant of 0.001. To prevent over-fitting and to encourage generalisation, a dropout layer

was used after each dense or fully connected layer followed by a batch normalisation layer. In the

convolutional blocks, the convolutional layer is normalised (using a batch normalisation layer) and

3

down sampled (using a max-pooling layer) except for the last block. For the first two blocks, the

convolutional filter size is 10 × 1 and for the last two blocks this is reduced to 5 × 1. One hundred

such filters are applied in each block. The optimisation algorithm was stochastic gradient descent,

with a learning rate of 0.001, Nesterov momentum [2] and was applied for at least 100 iterations.

counts (1/s)

0 40 80 120

ti
m
e
(n
s
)

0

2

4

counts (1/s)

0 40 80 120

ti
m
e
(n
s
)

0

2

4

80

40

20

160

10
0

n.1

n.3

n.2

A

B

C

D

Df

Db

E
ma
xp
oo
lin
g

ma
xp
oo
lin
g

ma
xp
oo
lin
g

co
nv
olu
tio
n 1
0x
1

co
nv
olu
tio
n 1
0x
1

co
nv
olu
tio
n 5
x1

co
nv
olu
tio
n 5
x1

fla
tte
n

+

co
nc
ate
na
te

ful
ly
co
nn
ec
ted

ful
ly
co
nn
ec
ted

outputinput

dense layer

convolutional layers

FIG. 1. The ANN architecture. The temporal histogram for one pixel forms the input vector for two

parallel layers. The upper layer is a fully connected layer (each input component is connected to each

network neuron) that extracts information across the pixel profile. The lower layers comprise convolutional

blocks which are designed to focus on the shape-like features of the profile by passing small one dimensional

filters over the input. The output from each parallel layer is concatenated and connected to 3 person (n.1,

n.2 and n.3) and 7 location (A, B, C, D, Db, Df and E) classes. The softmax function is applied to the final

layer and the network is trained under categorical cross-entropy loss.

A second architecture was tested, which differs from the first architecture primarily by reducing

the number of filters from 100 to 32 for the first two blocks and 64 for the last two blocks. The

convolutional filter size is 5× 1 for all blocks. Average-pooling replaces max-pooling in the second

and third block and batch-normalisation is removed from the convolutional blocks. A noisy input

variant to each architecture was also tested. In these variants, a customised additive Gaussian noise

4

layer re-introduces background noise to encourage generalisation. However, the results suggest that

the form and level of the noise, based on just two day’s readings, confound rather than improve

the results.

Finally, we compare the results from different ANN architectures in Fig. 2 by reporting the

correct-prediction percentages for each individual class (i.e. the diagonal values in the confusion

matrices). The first algorithm (a) refers to the results presented above. In (b) a noise layer has

been added in order to help the network generalise robustly to variation associated with noise in the

sensor. The convolutional side is simplified in architecture (c), primarily by reducing the number

of convolutional filters. A noise layer was added to (c) in the architecture (d). Another further

simplification is applied for architecture (e) where only the fully-connected layer was considered.

In (f), a noise layer is added to (e) as well. Finally, we classify separately both people and

positions with just the fully-connected layer in (g). As we can observe, the results tend to not

show any particular sensitivity to the specific ANN architecture employed, therefore suggesting

the robustness of this modelling approach and that further improvement would need to come from

larger or more controlled training sets. However, the ANN performance does seem to suggest that

the approach of classifying location and identities jointly is consistently better than trying to deal

with these individually. This is probably because the internal representations learned to predict

class can then be useful to help predict location more accurately, and vice versa.

An alternative approach to evaluation of the test results can be taken. Instead of taking average

classification performance at a per-pixel level, we can base a classification on a majority verdict,

all the ca 800 per-pixel classifications for a single measurement and average performance at this

level. This can then be repeated in the same cross-validation manner used earlier. The goal here

is both that it illustrates how we can potentially improve performance by integrating over multiple

classifiers, and can also highlight whether the variability in the training set is mostly within pixels

(probably relating to the sensor itself) or within measurements (relating to variations in light,

pose, movement or clothing). The results of this approach indicate that misclassification is high

within certain measurements (typically one out of five measurements collected for a specific person-

location), see Figure 3. This suggests that possible differences between measurements are not fully

captured in the training data and are reducing the ability of the classifier to interpret previously

unseen variations in the test data. Low variation in the data may also explain why the architectural

changes were inconclusive. Increasing the variation within the training data should improve the

classifier and these findings will inform future directions for this work.

5

n.1 n.2 n.3 A B C D E Db Df

1

0.5

0

time (ns)

co
rr

ec
t c

la
ss

i�
ca

tio
n a

b
c
d
e
f
g

FIG. 2. A comparison between different architectures for the “same clothing” case is reported by showing

the individual correct classification for each employed class. (a) A fully-connected layer and convolutional

layers in parallel, (b) as (a) but with a background noise layer added after the input, (c) a fully-connected

layer and simplified convolutional layers in parallel, (d) as (c) but with a background noise layer added after

the input, (e) a fully-connected layer only, (f) a fully-connected layer and a background noise layer and (g)

a fully-connected layer for only people and a fully-connected layer for only location.

II. REFERENCES

[1] Francois Chollet. Keras. https://github.com/fchollet/keras, 2015.

[2] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization

and momentum in deep learning. In International conference on machine learning, pages 1139–1147,

2013.

6

n.1 n.2 n.3

0

50

100

c
la

s
s
if
ic

a
ti
o

n
 %

n.1.A

n.1 n.2 n.3

0

50

100
n.1.B

n.1 n.2 n.3

0

50

100
n.1.C

n.1 n.2 n.3

0

50

100
n.1.DB

n.1 n.2 n.3

0

50

100
n.1.DF

n.1 n.2 n.3

0

50

100
n.1.D

n.1 n.2 n.3

0

50

100
n.1.E

n.1 n.2 n.3

0

50

100
n.2.A

n.1 n.2 n.3

0

50

100
n.2.B

n.1 n.2 n.3

0

50

100
n.2.C

n.1 n.2 n.3

0

50

100
n.2.DB

n.1 n.2 n.3

0

50

100
n.2.DF

n.1 n.2 n.3

0

50

100
n.2.D

n.1 n.2 n.3

0

50

100
n.2.E

n.1 n.2 n.3

0

50

100
n.3.A

n.1 n.2 n.3

0

50

100
n.3.B

n.1 n.2 n.3

0

50

100
n.3.C

n.1 n.2 n.3

0

50

100
n.3.DB

n.1 n.2 n.3

0

50

100
n.3.DF

n.1 n.2 n.3

0

50

100
n.3.D

n.1 n.2 n.3

0

50

100
n.3.E

FIG. 3. Person Classification (% correct) results broken down by measurements. Classification

(% correct) is shown for each person (n.1 top row, n.2 middle row and n.3 bottom row) and each location

(A first column, B second column, C third column, Db fourth column, Df fifth column, D sixth column and

E seventh column) and for each of five measurements (blue, red, yellow, purple and green lines). For correct

classification of n.1, the line peaks should lie over the n.1 x-axis position on the top row. Likewise for correct

classification of n.2 on the middle row and correct classification of n.3 on the bottom row, the line peaks

should lie over the n.2 x-axis position on the middle row and the n.3 x-axis position on the bottom row,

respectively. For most person-location pairs, the lines are in agreement but for some, e.g. n.1.A, one line

differs indicating misclassification within this measurement.

7

III. EXAMPLE: PYTHON KERAS SCRIPT FOR THE ANN MODEL.

def s e tup mode l de f au l t (units , X TR, l 2 va lue , useConv , onlyClass , Ntr , ep value ,

y TRonehot , X TE, y TEonehot , y TRLonehot , y TELonehot) :

X TR and X TE are t he t r a i n i n g and t e s t i n g tempora l h i s t o g rams r e s p e c t i v e l y .

y TRonehot and y TEonehot are t h e person l a b e l s f o r each h i s togram r e s p e c t i v e l y .

y TRLonehot and y TELonehot are t h e l o c a t i o n l a b e l s f o r each h i s togram r e s p e c t i v e l y .

l 2 v a l u e i s t h e l 2 we i gh t decay con s t an t .

Ntr i s t h e number o f t r a i n i n g i n pu t s .

ep v a l u e i s t h e number o f t r a i n i n g epochs .

print (’Model : Defau l t ’)

regConst = l 2 va l u e

input vec = Input (shape=(X TR. shape [1] ,))

input vec2 = ExpandInput () (input vec)

xd = Dense (units , k e r n e l r e g u l a r i z e r=l2 (regConst) , input shape=(X TR. shape [1] ,)) (input vec)

xd = BatchNormalization () (xd)

x = Dropout (0 . 5) (xd)

xd = Act ivat ion (’ r e l u ’) (xd)

i f useConv :

x = Convolution1D (units , 10 , padding=’ same ’ , k e r n e l r e g u l a r i z e r=l2 (regConst) ,

input shape = (X TR. shape [0] ,X TR. shape [1] , 1)) (input vec2)

x = BatchNormalization () (x)

x = Act ivat ion (’ r e l u ’) (x)

x = MaxPooling1D () (x)

x = Convolution1D (units , 10 , padding=’ same ’ , k e r n e l r e g u l a r i z e r=l2 (regConst)) (x)

x = BatchNormalization () (x)

x = Act ivat ion (’ r e l u ’) (x)

x = MaxPooling1D () (x)

x = Convolution1D (units , 5 , padding=’ same ’ , a c t i v a t i on=’ r e l u ’ , k e r n e l r e g u l a r i z e r=l2 (regConst)) (x)

x = BatchNormalization () (x)

x = Act ivat ion (’ r e l u ’) (x)

x = MaxPooling1D () (x)

x = Convolution1D (units , 5 , padding=’ same ’ , a c t i v a t i on=’ r e l u ’ , k e r n e l r e g u l a r i z e r=l2 (regConst)) (x)

x = BatchNormalization () (x)

x = Act ivat ion (’ r e l u ’) (x)

x = Flatten () (x)

x = l ay e r s . concatenate ([x , xd] , ax i s=1)

else :

x = xd

x = Dense (units , k e r n e l r e g u l a r i z e r=l2 (regConst)) (x)

x = Dropout (0 . 3) (x)

x = BatchNormalization () (x)

x = Act ivat ion (’ r e l u ’) (x)

x = Dense (units , k e r n e l r e g u l a r i z e r=l2 (regConst)) (x)

x = Dropout (0 . 2) (x)

x = BatchNormalization () (x)

x1 = Act ivat ion (’ r e l u ’) (x)

8

xC = Dense (3 , a c t i v a t i on=’ softmax ’ , k e r n e l r e g u l a r i z e r=l2 (regConst)) (x1)

xL = Dense (7 , a c t i v a t i on=’ softmax ’ , k e r n e l r e g u l a r i z e r=l2 (regConst)) (x1)

i f on lyClass :

model = Model (input vec , outputs=xC)

else :

model = Model (input vec , outputs=[xC , xL])

randomly change order o f i n pu t s .

order= np . random . permutation (Ntr)

t r a i n t h e model u s ing SGD + momentum .

ba t ch s i z e = 32

nb epoch = ep va lue

l e a r n i n g r a t e = 0.001

decay rate = 0 .0

sgd = SGD(l r=l e a rn i ng r a t e , decay=decay rate , momentum=0.9 , nes te rov=True)

i f on lyClass :

model . compile (l o s s=’ c a t e g o r i c a l c r o s s e n t r o py ’ , metr i c s =[’ accuracy ’] , opt imize r=sgd)

h i s t c onv = model . f i t (x=X TR[order , :] ,

y=y TRonehot [order , :] ,

b a t ch s i z e=batch s i z e , epochs=nb epoch ,

va l i d a t i on da t a=(X TE, y TEonehot) , verbose=2)

else :

model . compile (l o s s =[’ c a t e g o r i c a l c r o s s e n t r o py ’ , ’ c a t e g o r i c a l c r o s s e n t r o py ’] ,

met r i c s =[’ accuracy ’] , opt imize r=sgd)

h i s t c onv = model . f i t (x=X TR[order , :] ,

y=[y TRonehot [order , :] , y TRLonehot [order , :]] ,

b a t ch s i z e=batch s i z e , epochs=nb epoch ,

va l i d a t i on da t a=(X TE, [y TEonehot , y TELonehot]) , verbose=2)

return model , h i s t c onv

