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1 Harmonic ToF Camera Model

In this section we expand on the sinusoidal model derived in the
to allow for arbitrary periodic modulation functions for both the
illumination and the camera reference signal.

As before, we assume periodically modulated illumination with an
angular frequency ω. In the general case, this illumination signal
can be described as a superposition of all the harmonics of this fre-
quency at different phases θk:

g(t) =

∞∑
k=0

gk cos(kωt+ θk)

Assuming a stationary object, the illumination arriving at the sensor
can then be expressed as

s(t) =

∞∑
k=0

sk cos(kωt+ φk)

where s0 includes ambient illumination, and sk for k > 0 includes
geometric terms and the surface albedo as before. The phase shifts
are given as

φk = θk + kω
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Assuming a zero-mean modulation function f , the modulated sig-
nal at the sensor is then

ĩψ(t) =fψ(t) · s(t) (1)

=

∞∑
j=1

fj cos(jωt+ ψj) ·
∞∑
k=0

sk cos(kωt+ φk) (2)

=
1

2

∞∑
j=1

∞∑
k=0

fjsk cos((k − j)ωt+ φk − ψj)+

1

2

∞∑
j=1

∞∑
k=0

fjsk cos((k + j)ωt+ φk + ψj) (3)

=
1

2

∞∑
k=0

fksk cos(φk − ψk)+

1

2

∞∑
j=1

∑
k 6=j

fjsk cos((k − j)ωt+ φk − ψj)+ (4)

1

2

∞∑
j=1

∞∑
k=0

fjsk cos((k + j)ωt+ φk + ψj).

Low-pass filtering due to the finite exposure time T eliminates all
but the first term in Equation 4:

iψ(t) = ĩψ(t) ∗ rect(Tt) ≈ 1

2

∞∑
k=0

fksk cos(φk − ψk). (5)

In order to recover depth and albedo from Eq. 5, the camera needs
to be calibrated for different depths, either as a dense lookup table

of depth, or by estimating the coefficients fk and sk from sparser
measurements.

For moving objects, we can again analyze the Doppler shift, and
obtain

s(t) =

∞∑
k=0

sk cos(k(ω + ∆ω)t+ φk)

and

iψ(t) ≈ 1

2

∞∑
k=0

fksk cos(∆ωt+ φk − ψk). (6)

Finally, we can use Equation 6 to analyze inter-carrier interference
in the case of general periodic functions. As in Section 4.1 of the
main article, we define the ratio image of a heterodyne and a homo-
dyne image, and obtain:

r ≈
∫ T
0

1
2

∑∞
k=0 fksk cos((ωf − ωg − ∆ω)t+ ψ − φ) dt∫ T

0
1
2

∑∞
k=0 fksk cos(−∆ωt+ ψ − φ) dt

(7)

Due to the multiple terms in both numerator and the denominator
this equation cannot be simplified such that the dependencies on
the phases ψ and φ cancel out. Unlike the sinusoidal model, gen-
eral periodic functions thus introduce a phase- or depth-dependency
to the velocity measurements. These need to be calibrated (see Sec-
tion 6 in the main text).

2 Additional Information for Velocity Map De-
noising

Figure 2: Synthetic test pattern (top left) and simulated measure-
ment that is heavily corrupted by Poisson noise (top right). Vari-
ous modern denoising strategies applied, including BM3D (bottom
left), BM3D with binning (bottom center), and non-local means
(NLM) with binning (bottom right). To account for the high level
of Poisson noise in the measurements, we apply the latter denoising
strategy to all captured velocity data.

With our system, we capture an extremely small frequency shift
(in the Hz range) relative to the modulation frequency (the MHz
range). Additionally, the quantum efficiency of emerging time-of-
flight sensors is still far from that of modern solid state sensors [Erz
and Jähne 2009], and the demodulation contrast drops significantly
for high frequencies [Shcherbakova 2013]. Under these conditions,



Figure 1: Alignment of raw frames: Each individual image has the heterodyne capture encoded in the red color channel and the homodyne
capture in the blue channel. The top row shows frames before alignment. The bottom row are the respective frames after alignment.

the few photons collected during a measurement are strongly af-
fected by Poisson noise. To account for this, we apply a denoising
strategy to all captured velocity maps.

We test several denoising strategies for a synthetic example in
Figure 2. The ground truth test pattern (top left) is synthetic-
ally corrupted by Poisson noise (top right). Standard denoising
approaches, such as BM3D fail in these conditions, even when
variance-stabilizing transforms are applied (bottom left). As re-
cently discussed by Salmon et al. [2014], a simple improvement of
BM3D results in significant improvements. First, one accumulates
the photon counts locally in bins (for example with a size of 3 × 3
pixels) that now have much higher photon counts (but lower spa-
tial resolution). The denoiser is subsequently applied to the binned
counts. Finally, the image is upsampled. We show simulated res-
ults using this method in Figure 2 (bottom center). Unfortunately,
we observe completely missing structures in the image, which is
undesirable. Using the binning strategy [Salmon et al. 2014] but
replacing BM3D by a non-local means denoiser results in slightly
blurrier but overall favorable results (bottom right). We apply this
denoising strategy to all of the presented results.

3 Subframe Alignment

In our hardware implementation we did not have access to the
FPGA controlling the capture protocol of our sensor. Therefore,
we were limited to capturing the individual subframes in an alter-
anting fashion. Note that if frame-level synchronization can be im-
plemented, the required heterodyne and homodyne shots could be
captured simultaneously using multi-sensor configurations. For our
time-sequential implementation we align the frames post-capture
using SIFT flow on the raw data. The resulting flow fields are used
to warp each homodyne sub-frame to the raw heterodyne sub-frame
of each respective capture. Figure 1 shows results for this alignment
procedure. While not being perfect, the flow estimates are reason-
able for most scenarios.

4 Additional Results

This section includes additional results which have not been presen-
ted in the paper. Results for a variety of different scenes and velo-
cities are shown in the Figures 3, 6, 8 , 4 and 5. We show linear tra-
jectories with Figure 3, rotating movement orthogonal to the optical
axis in Figure 6, arced trajectories in Figure 8, periodic movement
along the optical axis in Figure 4 and slow rotating movements in
Figure 5.

Besides accurate velocity in all shown scenarios, we also demon-
strate with Figures 6, 8 that our system is capable of producing
reasonable results outdoors under strong ambient illumination.

Figure 3: Additional airsoft gun example including depth. Top:
Color frames, Center: Measured and reconstructed velocity, Bot-
tom: Reconstructed depth.

Figure 4: Velocity reconstruction for a long stick moved back and
forth along the optical axis.



Figure 5: Multiple color (top row) and velocity (bottom row) frames of a video. The styrofoam head balances a cup that is shot by the spring
airsoft gun.

Figure 6: Rotational movement on a circular trajectory. The for-
ward motion on the left (towards the camera) is measured in the
lower part of the trajectory. Backward motion on the right (away
from the camera) is measured in the upper part of the trajectory.
Additionally we show depth estimates.

Figure 7: Very fast rotating movement of a tennis bat. This is a
failure case for the alignment. The thin structures of the mesh inside
of the bat fail to be aligned properly and therefore do not result in a
sensor response. Only the thicker handle is properly reconstructed.

Figure 8: Additional results of the ping-pong gun. Because of the
baseline between the two cameras, objects very close to the camera
are not perfectly aligned as seen on the right.

References
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