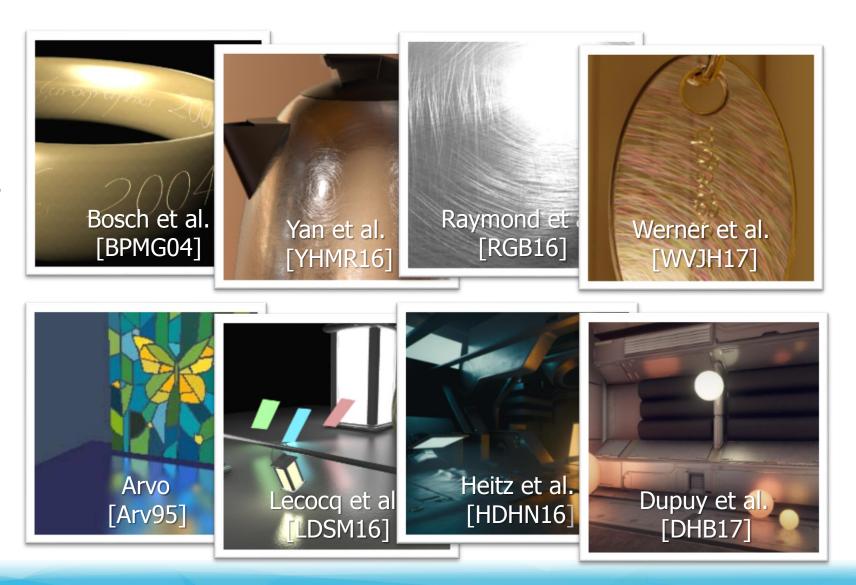
Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces

Zdravko Velinov¹, Sebastian Werner¹, Matthias Hullin¹

¹ University of Bonn, Germany

Motivation

 Iridescent scratches defined by wave-optical phenomena appear on many everyday items



Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov et al.

Related Work

Scratched surfaces

• Area lighting

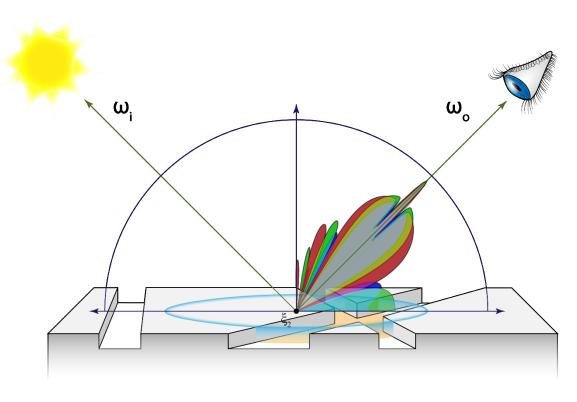
Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov et al.

Goals

• Area lighting of worn surfaces covered by iridescent scratches

• Anti-aliasing of scratches based on camera pixel footprint

• Everything in real-time with single sample per pixel both in spatial and angular domain



Scratch Iridescence Model

Combined Surface BRDF Model

- Superposition of scratch S and masked base BRDF \mathcal{B} parameterized by the direction cosine ξ , spatial position **x** $f(\xi, \mathbf{x}) = \frac{1}{\pi \sigma^2} |\mathcal{B}(\xi) - S(\xi, \mathbf{x})|^2$
- Base BRDF in this case is limited to the smooth coherent model
- Scratch BRDF is defined according to [WVJH17]

 $\log f(\xi, \mathbf{X})$

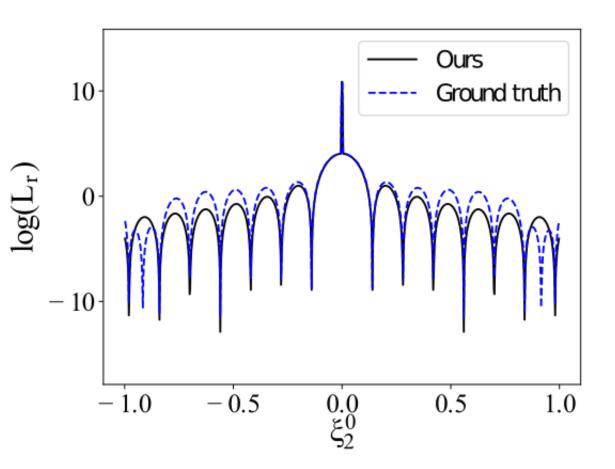
Incoherent superposition

• Arbitrary base BRDF is enabled by neglecting interference

$$f(\xi, \mathbf{x}) \approx \frac{1}{\pi \sigma^2} \left(\mathcal{B}(\xi) | \mathcal{F}(\xi) | \mathcal{B}(\xi, \mathbf{x}) | \mathcal{F}(\xi, \mathbf{x}$$

- Masking is performed according to the scratch density ρ

• Separates the base from the scratch response!



Scratch BRDF

- Defined by width function W across the scratch, depth function D and longitudinal integral term η $S(\xi, \mathbf{x}) = W(\xi) \cdot D \cdot \eta(\xi, \mathbf{x})$
 - $= W(\xi) \cdot D \cdot \eta_{a}(\xi) \cdot \eta_{s}(\mathbf{x})$ $= W(\xi) \cdot D \cdot \eta_{a}(\xi) \cdot \eta_{s}(\mathbf{x})$
- We use the small angles approximation

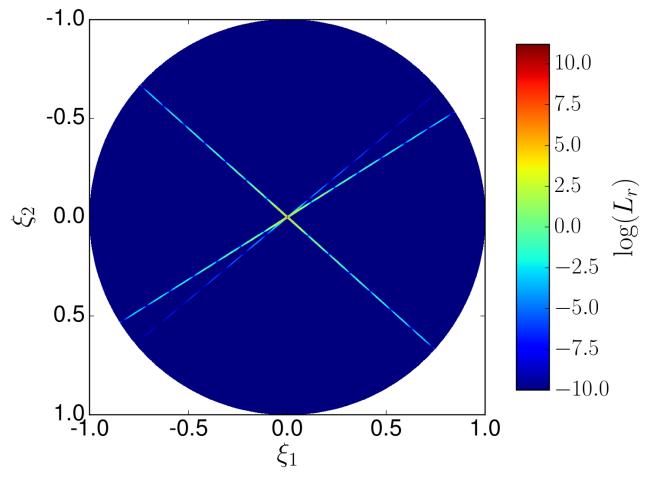
 $D \approx 1 - e^{-i4\pi d/\lambda}$

• Enables separability in angular domain!

Simplified integration in angular domain

• The separable BRDF in angular domain simplifies integration significantly

 $\mathbf{L} = \int_{\Omega^+} f(\boldsymbol{\xi}) \, L_i \, d\boldsymbol{\xi}$


$$\xi = \omega_{i,t} + \omega_{o,t}$$

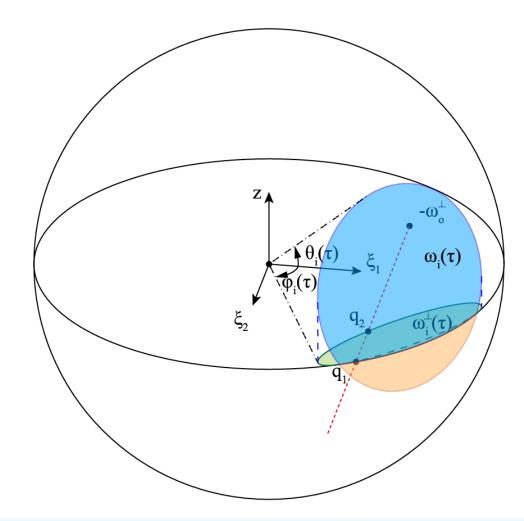
• The projected outgoing direction $\omega_{o,t}$ acts as offset of the light source projection defined by the projected incident direction $\omega_{i,t}$

Approximation motivation

• Response by three scratches in direction cosine domain

Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov

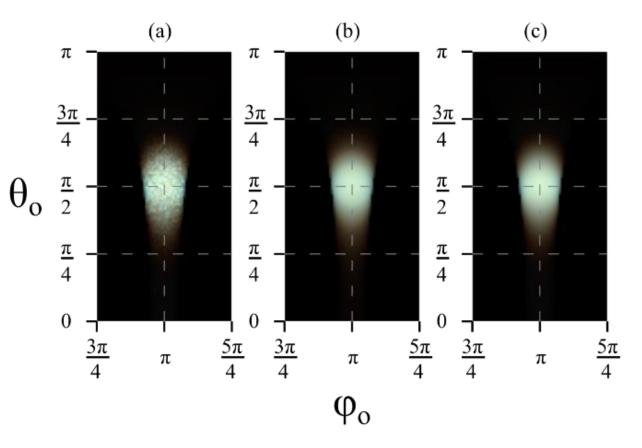
et al.



Spherical Light Sources

Spherical Light Source

- *1. Check* for sphere underneath horizon
- *2. Project* disk in direction cosine domain
- *3. Intersect* horizon arc, if needed
- 4. Intersect projected ellipse
- 5. Assemble line segment
- *6. Evaluate* integral and superimpose on *Spherical Pivot Transformed Distribution* (SPTD) [DHB17]



Approximation Comparison

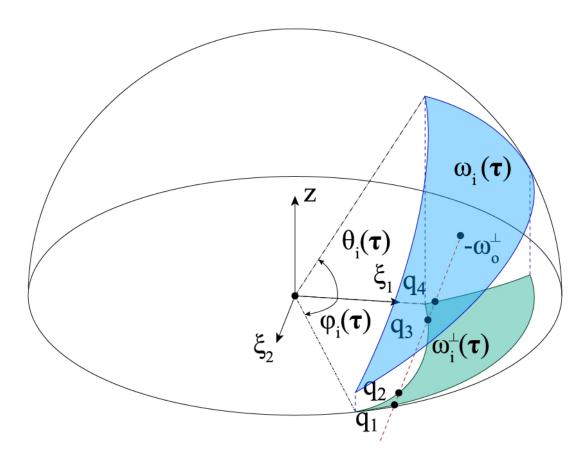
a) Monte Carlo

b) Ours (Approximate Si)

c) Exact analytic approximation

Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov

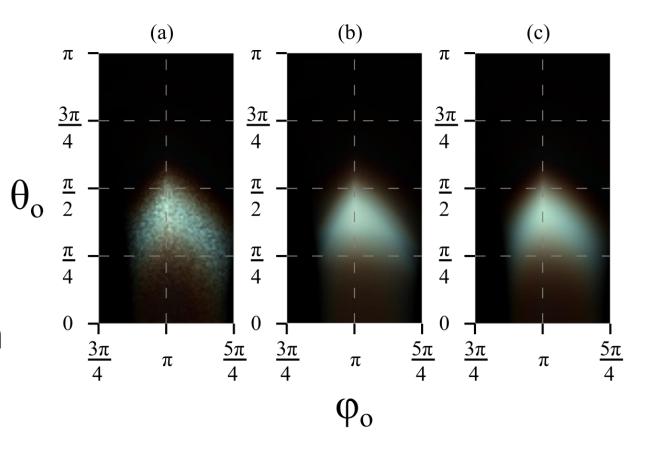
et al.



Polygonal Light Sources

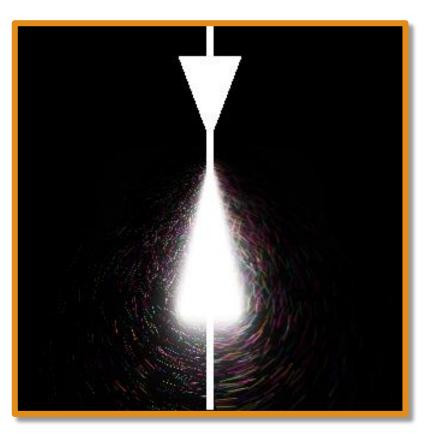
Polygonal Light Source Algorithm

- *1. Clip* (split) triangle to the upper hemisphere
- *2. Project* triangle into direction cosine domain as arcs
- *3. Intersect* arcs with reflected band
- *4. Cull* points outside of a triangle
- *5. Sort* intersection points with bitonic sort and assemble line segments
- *6. Evaluate* integral and superimpose on *Linearly Transformed Cosines* (LTC) [HDHN16]



Approximation Comparison

a) Monte Carlo


b) Ours (Approximate Si)

c) Exact analytic approximation

Anti-Aliasing and Scratch Density

Anti-Aliasing and Base Masking

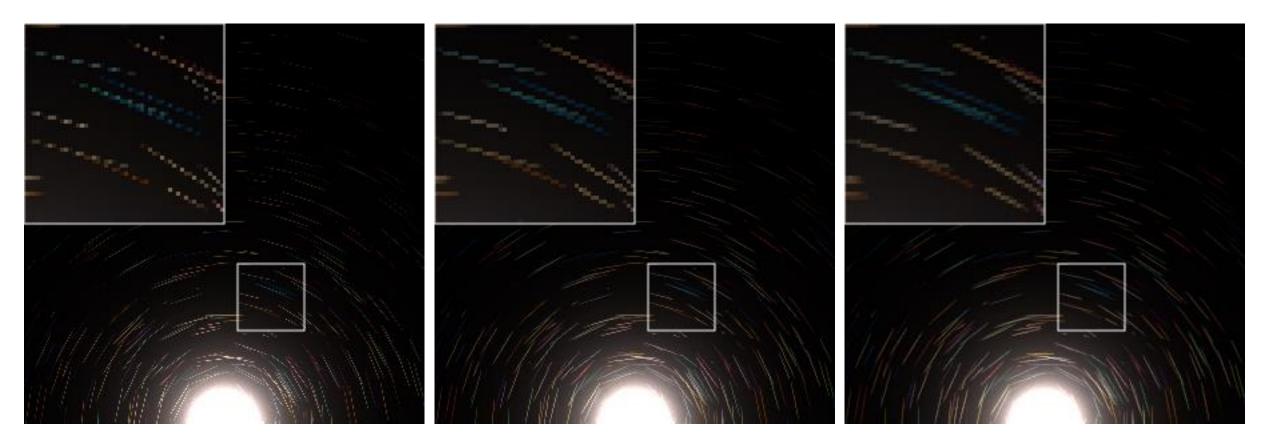
• Taking the limit and correcting for small pixel footprint is good enough to approximate the integral in spatial domain

$$\alpha = \min\left(\frac{1}{2}\frac{A_{\wp}}{A_{C}}, 1\right)$$
$$|\eta_{\wp}|^{2} \approx \alpha \int_{-\infty}^{+\infty} \int_{s_{1}}^{s_{2}} |\eta_{s}|^{2} dx dy + (1-\alpha)A_{\wp}|\eta_{s}|^{2}$$

Scratch density is similarly approximated

$$\rho_{\wp} \approx \frac{2}{A_{\wp}} \sum_{m}^{1} W^{(m)} l_{contained}^{(m)}$$

Anti-Aliasing and Base Masking (Error)



Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov

et al.

Anti-Aliasing

No Anti-Aliasing

Anti-Aliasing (Ours)

Monte Carlo (Box)

Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov et al.

Implementation and Results

Data Structure

- Bounding Volume Hierarchy threaded BVH with skip pointers [Smi98] simplified compared to the DAG data structure from original paper [WVJH17]
- Per Triangle Array
 - Traversed by using PrimitiveID from Visibility Buffer
 - Requires covering scratches associated with nearby triangles that fall within the coherence area
 - Similarly applicable in regular path tracing

Data Structure (Benchmark)

Benchmark was performed on NVIDIA GTX 970M

	AA disabled						AA enabled		
Туре	BVH			Per Triangle Array			BVH		
Zoom-In	0.5x	1x	2x	0.5x	1x	2x	0.5x	1x	2x
Intersection Only	4.1ms	4.4ms	5.5ms	2.9ms	3.5ms	3.8ms	18.1ms	17.5ms	15.5ms
Sphere	4.5ms	6.3ms	12.8ms	3.9ms	4.7ms	8ms	27.3ms	31.7ms	36.3ms
Triangle	13.9ms	26.5ms	60.6ms	12.5ms	21.1ms	43.4ms	48.5ms	60.3ms	94.1ms
Sphere 0.5x 1x No AA Image: Constraint of the second seco		2x AA		0.5x		1x		2x	
Triangle 0.5 No AA	ix	1x		2x A	Q	.5x		×	2x

Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov et al.

Interactive editing with complete model

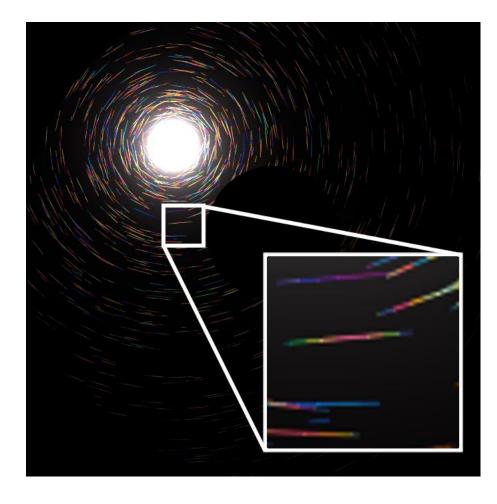
Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov et al.

Summary

- Improved performance several orders of magnitude compared to [WVJH17] and enabled real-time performance
 - Polygonal and sphere light sources with potential for generalizing to more simple shapes
 - Anti-aliasing through approximate integration in spatial domain
 - More performant specialized data structure which are also compatible with original model
- Properties of the original model are preserved by approximations

Thank you

Source Code: <u>http://3dgraphics.guru/code/TempestRenderer-EG2018.zip</u>



Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov et al.

Ground truth

Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces, Velinov et al.

Complete BRDF + Light Source Line Integral

$$f(\boldsymbol{\xi}, \mathbf{X}) \approx \frac{1}{\pi \sigma^2} ((1 - \boldsymbol{\rho}) |\mathcal{B}(\boldsymbol{\xi})|^2 - |\mathbf{S}(\boldsymbol{\xi}, \mathbf{X})|^2)$$

$$\mathbf{S}(\xi|q_1, q_2) = W^{(m)^2} D^{(m)^2} \eta_s^{(m)^2} \left(\aleph^{(m)}(\xi, q_1) - \aleph^{(m)}(\xi, q_0) \right)$$

$$\aleph^{(m)}(\xi,q) = \frac{\sqrt{\pi}}{\sigma\pi} \left(2 \frac{\operatorname{Si}(kW^{(m)}q)}{kW^{(m)}} - 4 \frac{\operatorname{Sin}^2(kW^{(m)}q/2)}{k^2W^{(m)}^2q} \right)$$

